Variable Precision Intuitionistic Fuzzy Rough Set Based on θ Operator
XUE Zhan′ao, YUAN Yilin, XIN Xianwei, HAN Danjie
College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007 Engineering Laboratory of Intelligence Business and Internet Things Technologies, Henan Normal University, Xinxiang 453007
Abstract:In the fuzzy approximation space, combing the membership degree and non membership degree of the intuitionistic fuzzy sets with fuzzy implication operator, the concept of intuitionistic fuzzy and its membership degree and non membership degree based on θ operator and θ* operator are presented and their properties are proved. Then, integrating the intuitionistic fuzzy set and the variable precision rough set, a variable precision intuitionistic fuzzy rough set is defined based on θ operator.A method to solve the threshold parameter β of variable precision rough set is put forward. Finally, an example for analyzing the method is provided.
[1] ZADEH L A. Fuzzy Sets. Information and Control, 1965, 8(3): 338-353. [2] ATANASSOV K T. Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, 1986, 20(1): 87-96. [3] PAWLAK Z. Rough Sets. International Journal of Computer and Information Sciences, 1982, 11(5): 341- 356. [4] DUBOIS D, PRADE H. Rough Fuzzy Sets and Fuzzy Rough Sets. Internal Journal of General Systems, 1990, 17(2/3): 191-209. [5] 巩增泰,孙秉珍,邵亚斌,等.一般关系下的变精度粗糙集模型.兰州大学学报(自然科学版), 2005, 41(6): 110-114. (GONG Z T, SUN B Z, SHAO Y B, et al. Variable Precision Rough Set Model Based on General Relations. Journal of Lanzhou University(Natural Sciences), 2005, 41(6): 110-114.) [6] GONG Z T, SHI Z H, YAO H X. Variable Precision Rough Set Model for Incomplete Information Systems and Its β-Reducts. Computing and Informatics, 2012, 31(6): 1985-1399. [7] ZHAO X R, HU B Q. Fuzzy Variable Precision Rough Sets Based on Residuated Lattices. International Journal of General Systems, 2015, 44(7/8): 743-765. [8] LIU Y, LIN Y, ZHAO H H. Variable Precision Intuitionistic Fuzzy Rough Set Model and Applications Based on Conflict Distance. Expert Systems, 2015, 32(2): 220-227. [9] GONG Z T, ZHANG X X. The Further Investigation of Variable Precision Intuitionistic Fuzzy Rough Set Model. International Journal of Machine Learning and Cybernetics, 2016. DOI: 10.1007/s13042-016-0528-9. [10] 周志华,曹存根.神经网络及其应用.北京:清华大学出版社, 2004. (ZHOU Z H, CAO C G. Neural Network and Its Application. Beijing, China: Tsinghua University Press, 2004.) [11] 薛占熬,程惠茹,黄海松,等.模糊空间中的直觉模糊粗糙近似.计算机科学, 2013, 40(4): 221-225. (XUE Z A, CHENG H R, HUANG H S, et al. Rough Approximations of Intuitions Fuzzy Sets in Fuzzy Approximation Space. Computer Science, 2013, 40(4): 221-225.) [12] 张晓霞.基于剩余蕴涵的变精度直觉模糊粗糙集和模糊软粗糙集模型.硕士学位论文.兰州:西北师范大学, 2014. (ZHANG X X. Variable Precision Intuitionistic Fuzzy Rough Set Model and Fuzzy Soft Rough Set Model Based on Residual Implicators. Master Dissertation. Lanzhou, China: Northwest Normal University, 2014.) [13] 黄正华,胡宝清.模糊粗糙集理论研究进展.模糊系统与数学, 2005, 19(4): 125-134. (HUANG Z H, HU B Q. The Studies of Fuzzy Rough Sets Theory: A Survey. Fuzzy Systems and Mathematics, 2005, 19(4):125-134.) [14] 吴伟志,张文修,徐宗本.粗糙模糊集的构造与公理化方法.计算机学报, 2004, 27(2): 197-203. (WU W Z, ZHANG W X, XU Z B. Characterizating Rough Fuzzy Sets in Constructive and Axiomatic Approaches. Chinese Journal of Computers, 2004, 27(2):197-203.) [15] 郭海刚,张振良,高井贵.相似关系下的模糊粗糙集.昆明理工大学学报(理学版), 2004, 29(6): 153-156. (GUO H G, ZHANG Z L, GAO J G. Fuzzy Rough Sets Based on Similar Relation. Journal of Kunming University of Science and Technology(Science and Technology), 2004, 29(6): 153-156.) [16] 雷英杰,路艳丽,樊 雷,等.直觉模糊粗糙集理论及其应用.北京:科学出版社, 2013. (LEI Y J, LU Y L, FAN L, et al. Intuitionistic Fuzzy Rough Set Theory and Its Application. Beijing, China: Science Press, 2013.) [17] 程慧茹.直觉模糊粗糙近似算子的研究.硕士学位论文.新乡:河南师范大学, 2013. (CHENG H R. Research on Intuitionistic Fuzzy Rough Approximation Operators. Master Dissertation. Xinxiang, China: Henan Normal University, 2013.) [18] 尤 飞,李洪兴.模糊蕴涵算子及其构造(Ⅳ)——模糊蕴涵算子的对偶算子.北京师范大学学报(自然科学版), 2004, 40(5): 588-599. (YOU F, LI X X. Fuzzy Implication Operators and Their Construction (IV): Dual Operators of FIOs. Journal of Beijing Normal University(Natural Science), 2004, 40(5): 588-599.) [19] 尤 飞,杨昔阳,李洪兴.模糊蕴涵算子及其构造(Ⅲ)——由三角模或余三角模构造的模糊蕴涵算子.北京师范大学学报(自然科学版), 2004, 40(4): 427-432. (YOU F, YANG X Y, LI H X. Fuzzy Implication Operators and Their Consturction(III): FIOs Constructed by Triangular Norms or Co-triangular Norms. Journal of Beijing Normal University(Natural Science), 2004, 40(4): 427-432.) [20] 汪德刚,李洪兴.蕴涵算子族及其构造.北京师范大学学报(自然科学版), 2008, 44(1): 25-31. (WANG D G, LI H X. Fuzzy Implication Operators Family and Its Structure. Journal of Beijing Normal University(Natural Science), 2008, 44(1): 25-31.) [21] 陈 昊,杨俊安,庄镇泉.变精度粗糙集的属性核和最小属性约简算法.计算机学报, 2012, 35(5): 1011-1017. (CHEN H, YANG J A, ZHUANG Z Q. The Core of Attributes and Minimal Attributes Reduction in Variable Precision Rough Set. Chinese Journal of Computers, 2012, 35(5): 1011-1017.) [22] ZIARKO W. Variable Precision Rough Set Model. Journal of Computer and System Sciences, 1993, 46(1): 39-59.
[23] SLEZAK D, ZIARKO W. The Investigation of the Bayesian Rough Set Model. International Journal of Approximate Reasoning, 2005, 40(1/2): 81-91. [24] 薛占熬,王 楠,司小朦,等.多粒度粗糙直觉模糊截集的研究.河南师范大学学报(自然科学版), 2016, 44(5): 131-139. (XUE Z A, WANG N, SI X M, et al. Research on Multi-granularity Rough Intuitionistic Fuzzy Cut Sets. Journal of Henan Normal University(Natural Science Edition), 2016, 44(5): 131-139.) [25] YAO Y Y. Probabilistic Rough Set Approximations. International Journal of Approximate Reasoning, 2008, 49(2): 255-271. [26] ZHAO S Y, TSANG E C C, CHEN D G. The Model of Fuzzy Variable Precision Rough Sets. IEEE Transactions on Fuzzy Systems, 2009, 17(2): 451-467. [27] GONG Z T, ZHANG X X. Variable Precision Intuitionistic Fuzzy Rough Sets Model and Its Application. International Journal of Machine Learning and Cybernetics, 2014, 5(2): 263-280.